Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Document Type
Year range
1.
Nat Commun ; 12(1): 4543, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328844

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) is a global health emergency. Various omics results have been reported for COVID-19, but the molecular hallmarks of COVID-19, especially in those patients without comorbidities, have not been fully investigated. Here we collect blood samples from 231 COVID-19 patients, prefiltered to exclude those with selected comorbidities, yet with symptoms ranging from asymptomatic to critically ill. Using integrative analysis of genomic, transcriptomic, proteomic, metabolomic and lipidomic profiles, we report a trans-omics landscape for COVID-19. Our analyses find neutrophils heterogeneity between asymptomatic and critically ill patients. Meanwhile, neutrophils over-activation, arginine depletion and tryptophan metabolites accumulation correlate with T cell dysfunction in critical patients. Our multi-omics data and characterization of peripheral blood from COVID-19 patients may thus help provide clues regarding pathophysiology of and potential therapeutic strategies for COVID-19.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Critical Illness , Genomics/methods , Humans , Lipidomics/methods , Metabolomics/methods , Neutrophils/metabolism , Transcriptome/genetics
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(3): 975-982, 2021 Jun.
Article in Chinese | MEDLINE | ID: covidwho-1262718

ABSTRACT

OBJECTIVE: To analyze and predict the effect of coronavirus infection on hematopoietic system and potential intervention drugs, and explore their significance for coronavirus disease 2019 (COVID-19). METHODS: The gene expression omnibus (GEO) database was used to screen the whole genome expression data related with coronavirus infection. The R language package was used for differential expression analysis and KEGG/GO enrichment analysis. The core genes were screened by PPI network analysis using STRING online analysis website. Then the self-developed apparent precision therapy prediction platform (EpiMed) was used to analyze diseases, drugs and related target genes. RESULTS: A database in accordance with the criteria was found, which was derived from SARS coronavirus. A total of 3606 differential genes were screened, including 2148 expression up-regulated genes and 1458 expression down-regulated genes. GO enrichment mainly related with viral infection, hematopoietic regulation, cell chemotaxis, platelet granule content secretion, immune activation, acute inflammation, etc. KEGG enrichment mainly related with hematopoietic function, coagulation cascade reaction, acute inflammation, immune reaction, etc. Ten core genes such as PTPRC, ICAM1, TIMP1, CXCR5, IL-1B, MYC, CR2, FSTL1, SOX1 and COL3A1 were screened by protein interaction network analysis. Ten drugs with potential intervention effects, including glucocorticoid, TNF-α inhibitor, salvia miltiorrhiza, sirolimus, licorice, red peony, famciclovir, cyclosporine A, houttuynia cordata, fluvastatin, etc. were screened by EpiMed plotform. CONCLUSION: SARS coronavirus infection can affect the hematopoietic system by changing the expression of a series of genes. The potential intervention drugs screened on these grounds are of useful reference significance for the basic and clinical research of COVID-19.


Subject(s)
COVID-19 , Follistatin-Related Proteins , Hematopoietic System , Pharmaceutical Preparations , Computational Biology , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL